1. Definition and Basic Elements ( সংজ্ঞা ও মৌলিক উপাদান)
A right circular cone (লম্ব বৃত্তাকার শঙ্কু) is a three‑dimensional figure with a circular base and a vertex (শৃঙ্গ) directly above the center of the base. Key elements include:
- Radius (r, ব্যাসার্ধ): Distance from the center of the base to any point on the circumference.
- Height (h, উচ্চতা): Perpendicular distance from the base to the vertex.
- Slant Height (l, ঢালু উচ্চতা): The length of the line from the base’s circumference to the vertex on the side, satisfying l=r2–h2
These parameters—r, h, and l—form the foundation for understanding surface areas and volume.
2.Slant Height (ঢালু উচ্চতা):
The slant height (l) is calculated using the Pythagorean theorem because the radius, slant height, and height form a right triangle:
l=r2–h2
Example:
If a cone has radius r = 3 cm and height h = 4 cm, then
l= 32–22 = 9+16 = 25 =5cm
- Surface Areas (পৃষ্ঠফল)
a) Curved Surface Area (CSA)
The curved surface area (পরিবাহী ক্ষেত্রফল) of a right circular cone is:
CSA=πrl
Using the prior example: CSA=π×3×5=15π cm2
- b) Total Surface Area (TSA)
Total surface area (মোট পৃষ্ঠফল) equals the curved surface area plus the base area:
TSA=πrl+πr2=πr(l+r)
For our example:
TSA=π×3×(5+3)=3π×8=24π cm2
4.Volume ( আয়তন)
The volume (ঘনত্ব) of a right circular cone is given by:
Volume= 13πr2h
Example: With r = 3 cm and h = 4 cm:
Volume= 13π×32×4=13π×9×4=12π cm3
5. Example & Application (উদাহরণ ও প্রয়োগ)
Example Problem:
A right circular cone has height h = 6 cm and slant height l = 10 cm. Find its radius, surface areas, and volume.
Solution:
- Compute the radius using r= = 102–62= 100-36 = 64 =8 cm.
- CSA: πrl=π×8×10=80π cm2.
- TSA: πr(l+r)=π×8×(10+8)=8π×18=144π cm2
- Volume: 13πr2h = 13π×82×6=13π×64×6=128π cm3.